## Synthesis and Structural Characterization, of Nickel(II) Complexs Supported by Aminodipyridylphosphine Oxide Ligand. The Catalytic Application to Thioacetalization of Aldehyde

# 學生:江柏誼 指導教授:于淑君 博士



#### **Corey-Seebach Reaction**



## Acetalization and Thioacetalization of Carbonyl Compounds

**Acetalization** 



#### **Thioacetalization**

#### **The Earlier Catalyst for Thioacetalization**



J.W. Ralls, et. al., J. Am. Chem. Soc. 1949, 71, 3320-3325

#### **HCI Catalyzed Thioacetalization**



quench HCl with 10 % KOH 75 ml

Robert Ramage, et. al., J. Chem. Soc., Perkin Trans. 1 1984, 71, 1547-1553.

#### **Lewis Acid Catalyzed Thioacetalization**

#### Conventional Lewis Acids

BF<sub>3</sub>-Et<sub>2</sub>O 、 ZnCl<sub>2</sub> 、 AICl<sub>3</sub> 、 SiCl<sub>4</sub> 、 LiOTf 、 InCl<sub>3</sub> Nakata, T. et. al., *Tetrahedron Lett.* **1985**, *26*, 6461-6464. Evans, D. V. et. al., *J. Am. Chem. Soc.* **1977**, *99*, 5009-5017. Firouzabadi, H. et. al., *Bull. Chem. Soc. Jpn.* **2001**, *74*, 2401-2406.

#### Transition Metal Lewis Acids

 $TiCl_4 \\ VCl_6 \\ CoCl_2 \\ Sc(OTf)_3 \\ MoCl_5 \\ NiCl_2 \\ Kumar, V. et. al.,$ *Tetrahedron Lett.***1983**,*24*, 1289-1292.Firouzabadi, H. et., al.*Synlett***1998**, 739-741.Goswami, S. et. al.,*Tetrahedron Lett.***2008**,*49*, 3092-3096.

#### Lanthanide Metal Lewis Acids

Lu(OTf)<sub>3</sub> 、 Nd(OTf)<sub>3</sub> Kanta, D. S. J. Chem. Res. Synop. **2004**,230-231. Kanta, D. S. Synth. Commun. **2004**, *34*, 230-231.

#### **BF<sub>3</sub>-Et<sub>2</sub>O Catalyzed Thioacetalization**



Paulo J.S. Moran. J. Organomet. Chem. , 2000, 603, 220-224

## MoCl<sub>5</sub> or MoO<sub>2</sub>Cl<sub>2</sub> Catalyzed Thioacetalization



S. Goswami, A. C. Maity . Tetrahedron Letters, 2008, 49, 3092-3096

#### **CoCl<sub>2</sub> Catalyzed Thioacetalization**



Surya Kanta De. Tetrahedron Letters, 2004, 45, 1035–1036

#### Nickel(II) Chloride Catalyzed Thioacetalization



A. T. Khan et al., Tetrahedron Lett. 2003, 44, 919-922

## **Motivation**

1.Traditional high valent metal halide Lewis acids are difficult to handle

ex.  $MCI_n$ ,  $M=Zn \cdot W \cdot Co \cdot Mo....$ 

- 2.Nickel is less expensive than other transition metal NiCl<sub>2</sub> 50g  $29.2 \text{ WCl}_6$  100g  $152.5 \text{ PdCl}_2$  25g  $849 \text{ NIBr}_2$  50g  $72.2 \text{ W(CO)}_6$  50g  $176 \text{ VIBr}_2$
- 3.(DME)NiBr<sub>2</sub> as preferable precursor not (DME)NiCl<sub>2</sub> [HO(CH<sub>2</sub>)<sub>11</sub>N(H)P(O)(2-py)<sub>2</sub>]NiBr<sub>2</sub> & [HO(CH<sub>2</sub>)<sub>11</sub>N(H)P(O)(2-py)<sub>2</sub>]NiCl<sub>2</sub>
- 4.Use  $HO(CH_2)_{11}N(H)P(O)(2-py)_2$  as chelate ligand





- Ni => small  $\Delta_{o}$  => tetrahedral & square planar Pd & Pt => large  $\Delta_{o}$  => square planar
- Ligands => large , weak-field => tetrahedral Ligands => small, strong-field => square planar

## Square Planar - Tetrahedral Isomerism of Nickel Halide Complexes of Ni(PPh<sub>2</sub>R)<sub>2</sub>X<sub>2</sub>

| Structures of $[NiX_2(PR(C_8H_5)_2)_2]$ in the Crystalline State <sup>a</sup> |        |                   |          |                          |                          |                   |                   |         |        |
|-------------------------------------------------------------------------------|--------|-------------------|----------|--------------------------|--------------------------|-------------------|-------------------|---------|--------|
| x                                                                             | Methyl | Ethyl             | n-Propyl | Isopropyl                | n-Butyl                  | Isobutyl          | s-Butyl           | t-Butyl | n-Amyl |
| C1                                                                            | Р      | Р                 | Р        | Р                        | Т, <sup><i>b</i></sup> Р | Р                 | Р                 |         | T, P   |
| Br                                                                            | Т      | Т, <sup>6</sup> Р | T, P°    | Т, <sup><i>b</i></sup> Р | Т, <sup>в</sup> Р        | Т, <sup>6</sup> Р | Т, <sup>в</sup> Р | Т       | Т      |
| I                                                                             | Т      | Т                 | Т        | T, $G^d$                 | Т                        | Т                 | T, $G^d$          | т       | Т      |

<sup>*a*</sup> P denotes square-planar, T tetrahedral, and G a dark green isomer of unknown structure. <sup>*b*</sup> The isomer obtained from ethanol. <sup>*c*</sup> Either (or both) isomers may be obtained from ethanol, depending on the conditions (see text). <sup>*d*</sup> The tetrahedral isomer precipitates first and, unless separated and dried rapidly, isomerizes to the dark green form.

#### The tetrahedral structure is *increasingly* favored in the orders

 $PPh_{2}R : P(C_{2}H_{5})_{3} < P(C_{2}H_{5})_{2}C_{6}H_{5} < PC_{2}H_{5}(C_{6}H_{5})_{2} < P(C_{6}H_{5})_{3}$ 

#### X : CI < Br < I

R. G. Hayter, F. S. Humiec. Inorg. Chem. 1965, 12, 1701-1706,

## Preparation of Aminodipyridylphosphine Oxide Ligand



### **Preparation of Nickel(II) Complex Catalyst**



## Chemical Shift of Paramagnetic Compounds for NMR





J. Phys. Chem. A, 2003, 107, 5821-5825



## IR of $[HO(CH_2)_{11}N(H)P(O)(2-py)_2]NiBr_2$



### EPR of HO(CH<sub>2</sub>)<sub>11</sub>N(H)P(O)(2-py)<sub>2</sub>]NiBr<sub>2</sub>



## SUQID of HO(CH<sub>2</sub>)<sub>11</sub>N(H)P(O)(2-py)<sub>2</sub>]NiBr<sub>2</sub>

$$\chi = m / H$$
  
 $\chi_{m} = (\chi / W) \times M$   
 $\mu_{eff} = (3k / N \beta 2) 1/2(\chi mT) 1/2 = 2.828(\chi_{m}T)^{1/2}$   
 $m$  : 磁矩, H : 外加磁場 (10000 guess),  $\chi$  : 磁化率  
 $\chi_{m}$  : 莫耳磁化率, W : 樣品重量, M : 樣品分子量  
 $\mu_{eff}$  : 有效磁矩, T : 溫度,  $\beta$  : 波耳磁元  
K : 波茲曼堂數, N : 6.02 x 1023



slope = 1/( 
$$\chi_{m}T$$
) = 0.936  
 $\chi_{m}T$  = 1/0.936  
 $\mu_{eff}$  = 2.828 (  $\chi_{m}T$ )<sup>1/2</sup>  
 $\mu_{eff}$  = 2.92

#### $HO(CH_2)_{11}N(H)P(O)(2-py)_2]NiBr_2$

$$\mu_{
m eff}$$
 = 2.92

| Spin Quantum<br>Number, S | Number of<br>Unpaired<br>Electrons | Multiplicity | Magnetic<br>Moment (bohr<br>magnetons) <sup>a</sup> |
|---------------------------|------------------------------------|--------------|-----------------------------------------------------|
| 0                         | 0                                  | Singlet      | 0                                                   |
| $\frac{1}{2}$             | 1                                  | Doublet      | 1.73                                                |
| Ĩ                         | 2                                  | Triplet      | 2.83                                                |
| 37                        | 3                                  | Quartet      | 3.87                                                |
| 2                         | 4                                  | Pentet       | 4.90                                                |
| $\frac{5}{2}$             | 5                                  | Sextet       | 5.92                                                |







#### **Tetrahedral**

## FAB-MS of HO(CH<sub>2</sub>)<sub>11</sub>N(H)P(O)(2-py)<sub>2</sub>]NiBr<sub>2</sub>



22

## Nickel Lewis Acids Complex Catalyzed Thioacetalization



| R H   | + HS<br>HS         | [HO(CF<br>><br>CH | [HO(CH <sub>2</sub> ) <sub>11</sub> N(H)P(O)(2-py) <sub>2</sub> ]NiBr <sub>2</sub><br>10 mole %<br>CH <sub>2</sub> Cl <sub>2</sub> / MeOH , 25°C R |                              |              |  |
|-------|--------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------|--|
| Entry | O<br>U             | Time              | Yield (%)                                                                                                                                          | Paper Rep                    | eported cat. |  |
|       | R                  |                   |                                                                                                                                                    | ( <i>NiCl</i> <sub>2</sub> ) |              |  |
|       |                    |                   |                                                                                                                                                    | Time                         | Yield (%)    |  |
| 1     | O<br>H             | 1.5 hr            | 92                                                                                                                                                 | 2.75 hr                      | 96           |  |
| 2     | HO                 | <b>2 min</b>      | >99                                                                                                                                                | 8 min                        | 96           |  |
| 4     | MeO                | <b>10 min</b>     | 99                                                                                                                                                 | 45 min                       | 90           |  |
| 6     | O <sub>2</sub> N H | <b>5 hr</b>       | 92                                                                                                                                                 | 20 hr                        | 82           |  |













| Entry | R                  | Thiol | <b>40°C</b>    |    | 25°C           |          |
|-------|--------------------|-------|----------------|----|----------------|----------|
|       |                    |       | Time Yield (%) |    | Time           | Yield(%) |
| 29    | O<br>H             | HS    | <b>10 min</b>  | 88 | 1.5 hr<br>(1)  | 92       |
| 30    | ОН                 | HS    | 15 min         | 87 | 2.5 hr<br>(15) | 89       |
| 31    | O <sub>2</sub> N H | HS SH | 1.5 hr         | 86 | 5 hr<br>(6)    | 92       |
| 32    | O H O H            | HS    | 3 hr           | 90 | 18 hr<br>(20)  | 93       |

## Comparison of Catalytic Activity Amoung Various Different Catalyst



| Entry | Cat.                                    | Time     | Yield (%) |
|-------|-----------------------------------------|----------|-----------|
| A     | Paper (NiCl <sub>2</sub> anhydrous)     | 30 min   | 93        |
| B     | NONE                                    | 24 hour  | 96        |
| С     | $HO(CH_2)_{11}N(H)P(O)(2-py)_2$         | 190 hour | 34        |
| D     | (DME)NiCl <sub>2</sub>                  | 5 min    | 90        |
| E     | [HO(CH2)11N(H)P(O)(2-py)2]NiCl2         | 35 min   | 93        |
| F     | (DME)NiBr <sub>2</sub>                  | 5 min    | 95        |
| G     | $[HO(CH_2)_{11}N(H)P(O)(2-py)_2]NiBr_2$ | 5 min    | >99       |

#### **Proposed Mechanism**



## Recyclable Nickel(II) Complex Catalyst for Thioacetalization of Aldehyde





<sup>1</sup>H NMR Solvent= CDCl<sub>3</sub> (0.01478M 4-lodoanisole)

#### **Near Future Work for Nickel(II) Complex**

• Immobilization onto AuNPs surfaces





## Conclusions

1.We have successfully synthesized an air- and water-stable and efficient catalyst { [HO(CH<sub>2</sub>)<sub>11</sub>NHPOpy<sub>2</sub>]NiBr<sub>2</sub> }.

- We use <sup>1</sup>H NMR 
   FT-IR 
   EPR 
   SQUID and FAB-MS for structural characterization of Nickel(II) complex, we have proved the compound demonstrated that it is a paramagnetic tetrahedral compound, and we will proceed detection of Elemental Analysis (EA).
- 3.In Ni-catalyst series, the Nickel(II) complex only can be reused for catalytic of thioacetalization of aldehyde many times without any loss of reactivity.

### Chemoselectivities in Acetalization, and Thioacetalization



J. Phys. Chem. A 2006, 110, 2181-2187

36

- (DME)NiCl<sub>2</sub> 5g 3549
- (DME)NiBr<sub>2</sub>5g 4060 \$ 77.3
- CoCl<sub>5</sub> 100g \$75
- MoCl<sub>5</sub> 100g \$ 130 MoO<sub>2</sub>Cl<sub>2</sub> 10g \$ 120

#### EPR of [Ni(CTH)DTBSQ]PF<sub>6</sub>



38