Synthesis of Pd Nanoparticles Supported Pd(II) Complexes and Catalytic Olefin Hydrogenation and Isomerization Reactions

學生:張朝欽

指導老師: 于淑君 博士

中正大學化學暨生物化學所

Types of Catalysts

Characteristics of catalysts	Homogenous	Heterogeneous	Hybrid
Cat. structure	Known	Unknown	Known
Catalyst modification	Easy	Difficult	Easy
Activity	High	Low	High
Selectivity	High	Low	High
Poisoning of cat.	High risk	Low risk	Low risk
Mechanical strength	Low	High	High
Cat. stabilities	Low	High	High
Conditions of catalysis	Mild	Harsh	Mild
Separation & recycle of cat.	Difficult	Easy	Easy
Industrialization	Difficult	Accessible	Accessible

Homogeneous Catalyst

Heterogeneous Catalyst

The Componemts of Hybrid Catalyst

Phosphines Attached to Polymer-Supported Peptides

Solid/Liquid Separations of Catalysts on Polymers

Bergbreiter, D. E. Chem. Rev. 2002, 102, 3345-3384.

8

The Limitation of Phosphine Ligand

a. Oxidation

b. Metal Leaching

Kinzel, E. J. Chem. Soc. Chem. Commun. 1986 1098

Catalyst Design

Gold NPs-Supported and SiO₂-Supported Catalysts $\begin{array}{c} OTMS & H & O \\ I & I \\ TMS \left(O - SI \right)_{p} CH_{2} (CH_{2})_{10} N - P \end{array}$ Cl₂Pd(2-py)₂P-Nୁ N⁻P(2-py)₂PdCl₂ $TMS - (O - \dot{SiO}) - (\dot{SiO}) -$ S O N-P(2-py)₂PdCl₂ Cl₂Pd(2-py)₂P-N(CH₂)₁₀CH₂ CH₂(CH₂)₁₀N-P(2-Py)₂PdCl₂ ... Cl₂Pd(2-p SiO₂-L-Pd $Au-HS(CH_2)_{11}N(H)(O)P(2-py)_2PdCl_2$ (Au-L-Pd) **TOF (h**⁻¹) R Cat. COOⁿBu COO^tBu Ph COOMe COOEt Pd(MeCN)₂Cl₂ 11100 15020 14500 13150 4250 Au-L-Pd^a 47333 48667 45333 44667 18667 SiO₂-L-Pd 9000 10000 7111 9666 4366 11 $^{a}Pd/S(CH_{2})_{7}CH_{3} = 1:1.4$ (mole ratio)

Catalytic [2+2+2] Alkyne Cyclotrimerization Reactions

$R-C\equiv C-R \xrightarrow{catalyst} R \xrightarrow{R} R \xrightarrow{R} R$							
Alkyne	catalyst	solvent	<i>Т</i> (°С)	<i>time</i> (min)	conversion ^c (%)		
R							
۳Pr	Au-L-Pd Pd(CH ₃ CN) ₂ Cl ₂	CDCI ₃	rt	40	99 53		
Et	SiO ₂ -PdCl ₂ ^b Au-L-Pd	CDCI ₃	rt	30	6 99		

^{*a*}Reaction conditions: alkyne (0.075 mmol) in CDCl₃ (1 mL), catalyst loading = 4 mol%. ^{*b*}alkyne (0.56 mmol) in CDCl₃ (3 mL), catalyst loading = 4 mol%.. ^{*c*}Conversions were determined by ¹H-NMR spectroscop ^{*d*}Products were purified and isolated by flash chromatography on SiO₂ with hexane/ethyl acetate. ^{*e*}Isomers ratios were determined by GC.

Motivation and Design

Palladium(II) Catalyst immobilized on Pd NPs

Synthesis of Spacer Linker

Synthesis of Pd-Immobilized Pd NPs

Single-phase Synthesis of Octanethiol Protected Pd-SR NPs (<u>6</u>)

Particle size distribution = 2.60 ± 0.5 nm

Langmuir **2002**, *18*, 1413-1418 ¹⁸

Particle size distribution = 2.72 ± 0.5 nm

ref. : Phys. Chem. Chem. Phys. 2001, 3, 3377-3381¹⁹

Immobilization of Soluble Pd(II) Complexes

Calculation of Surface Pd NPs

Particle size distribution = 2.41 ± 0.5 nm

單顆奈米原子團表面積: 代入 r = $r_0 \times n^{1/3}$ 1.2 = 0.169 × $n^{1/3} \rightarrow n = 362$ atom S = $4\pi r_0^2 n^{2/3}$ = $4\pi (169 \times 10^{-12})^2 \times 362^{2/3}$ =1.82 × 10^{-17} (m²) 單顆奈米原子團表面原子數: $n_s = S / \pi r_0^2 = 1.82 \times 10^{-17} / \pi (169 \times 10^{-12})^2$ = 203 atom 表面原子數佔總原子數百分比 = 236 / 455 = 51.86 % ※經¹H-NMR定量得知在15.4 mg的Pd-L-PdCl₂ (<u>8</u>) 含有辛硫醇 1.77 mg。

- 含有Pd(II) 錯化合物 10.56 mg
- 釲奈米粒子重 = <u>3.07</u>mg
- 總鈀奈米粒子數

= 3.07 mg \div 106420 mg / mol \times 6.02 \times 10^{23} atom/mol \div 455 atom/particle

= 7.96×10^{15} particles

辛硫醇分子總數

= 1.77 mg÷146000 mg / mol × 6.02 × 10²³ atom/mol = <u>7.29 × 10¹⁸</u> atom Pd(II)錯化合物總數

= 10.56 mg ÷ 580000 mg / mol × 6.02 × 10²³ atom/mol = <u>1.09 × 10¹⁹</u> atom 單顆鈀奈米粒子表面含:

表面鈀原子數 = <u>203</u> atom

每一顆Pd NPs含有:

Pd(II) 錯化合物:1.09 × 10¹⁹ atom÷(7.96×10¹⁵ particles)= 1369 atom/particle 辛硫醇= 7.29 × 10¹⁸ atom÷(7.96×10¹⁵ particles)= 915 atom/particle

Analytical data of Pd Nanoparticles (6), (7) & (8)

Nanoparticle	Size (nm)	n-octanethiol / Ligand (<u>4</u>) (mole ratio)
Pd-SR (<u>6</u>)	2.60 ± 0.5	10 / 0
Pd-ligand (7)	2.72 ± 0.5	9.1 / 13.6
Pd-ligand- PdCl ₂ (<u>8</u>)	2.41 ± 0.5	4.5 / 6

Solution ¹H NMR Spectra of Pd NPs (6) & (7)

(a) $HS(C\underline{H}_2)(C\underline{H}_2)(CH_2)_6CH_3$ (*n*-octanethiol, HSR)

IR Spectra of n-Octanethiol & Pd-SR NPs (6)

IR Spectra of Ligand (4), Pd NPs (7) & (8)

27

IR Spectra of Ligand (4), Pd NPs (7) & (8)

Hydrogenation Mechanism

Catalytic Hydrogenation Reactions in Hexane

^a Cat. = 0.3 mg, ^b Cat. = 3.0 mg, ^c Cat. = 1.0 mg substrate = 3 mmol

Isomerization Mechanism

Hydrogenation Reactions in Various Solvent Systems

PdCl₂(CH₃CN)₂ vs Pd-L-PdCl₂ in Hydrogenation

Cat.	substrate	mg (Pd(II)含量)	Reaction time (hr)	conv%
PdCl ₂ (CH ₃ CN) ₂	\bigcirc	0.0023 mg (9*10 ⁻³ mmol)	1.0	43
Pd-L-PdCl ₂	\bigcirc	0.0050 mg (9*10 ⁻³ mmol)	1.0	42

Cat.	substrate	product	Pd _{surf} mol %	Reaction time (hr)	conv %
			0.16ª	1.0	99
Pd-SR(<u>6</u>)	\bigcirc	\bigcirc	0.16ª	1.0	59
			0.16ª	1.0	6.5
	\square	\bigcirc	0.03ª (0.06)	1.0	99
Pd-L-PdCl ₂ (<u>8</u>)	\bigcirc	\bigcirc	0.03ª (0.06)	1.0	59
			0.03ª (0.06)	1.0	N.R.

^a Cat. = 1.0 mg, solvent system: ethanol

substrate = 3 mmol

Hydrogenation and Isomerization Reactions

Cat.	substrate	product	Pd _{surf} mol %	Reaction time (hr)	conv %	isomerization
Pd-SR(6)	$\sim\sim\sim$	·	0.16ª	1.0	100 (52)—	→ 48
			0.16ª	1.0	100 (34)	▶66
Cat.	substrate	product	Pd _{surf} mol %	Reaction time (hr)	conv %	
Pd-L-PdCl ₂	$\sim\sim\sim$	·~~~~	0.03 ^a (0.06)	1.0	100 (56) —	→ 44
(<u>8</u>)			0.02a		100	

^a Cat. = 1.0 mg,solvent system: ethanol

Conclusions

- We have developed a method to successfully immobilize molecular Pd(II) complexes catalysts on the surfaces of Pd NPs.
- Since the Pd NPs-Pd(II) hybrid catalysts are highly soluble in organic solvents, their structures and reactions could be easily studied by simple solution NMR technique.
- The Pd NPs-Pd(II) complexes were proven to be catalysts for a series of hydrogenation and isomerization reactions.